
The	CareWeb	Framework	Innovation	Project	
	
Objectives	
	
The	objectives	of	this	Innovation	Project	were	as	follows:	
	

1) Demonstrate	the	capabilities	of	the	CareWeb	Framework	(CWF),	a	Java-based,	server-
centric,	open-source,	Ajax	web	framework,	running	atop	a	VistA	instance.	

2) Demonstrate	the	ease	with	which	legacy	VistA/RPMS	code	can	be	ported	to	the	CWF.		
3) Port	selected	plugin	components	from	the	RPMS-EHR,	prioritized	according	to	their	

contribution	to	MU	certification.		
4) Demonstrate	an	evolutionary	approach	to	a	next	generation	EMR,	embracing	old	and	

new	technologies	side-by-side.	
	
Background	
	
The	CareWeb	Framework	(CWF)	was	developed	by	Doug	Martin	and	colleagues	at	the	Center	
for	Biomedical	Informatics	(CBMI)	at	the	Regenstrief	Institute	in	Indianapolis	as	a	common	
platform	for	the	collaborative	development	of	complex	clinical	applications	in	a	web	
environment.		It	has	been	used	as	the	foundation	for	a	full-featured	electronic	medical	record	
and	order	entry	system	(Gopher)	running	at	our	partner	hospital	(Eskenazi	Hospital),	and	a	
result	viewing/search	application	for	the	statewide	health	information	exchange	(Indiana	
Health	Information	Exchange).		Built	upon	a	stack	of	open	source	Java	and	JavaScript	
technologies	and	modeled	after	the	highly	successful	VueCentric	Framework	(the	
underpinnings	of	the	RPMS-EHR),	the	CWF	permits	the	construction	of	complex	applications	in	
a	modular	and	collaborative	fashion	using	a	programming	paradigm	that	is	already	familiar	to	
VistA/RPMS	developers.		The	CWF	provides	a	number	of	capabilities	that	facilitate	the	seamless	
integration	of	discrete	plugin	components	into	a	cohesive	application.		Foremost	among	these	
are:	
	

• Management	of	shared	context	such	as	user,	patient,	encounter.	Drawing	from	the	
CCOW	context	model,	this	service	coordinates	changes	to	shared	context	across	
subscriber	components	within	an	application	instance.	

• A	powerful	pub-sub	event	model	that	supports	the	propagation	of	events	within	an	
application	instance	and	across	application	boundaries.			Coupled	with	server	push	
capability,	this	enables	the	creation	of	highly	responsive	applications	that	can	react	to	a	
variety	of	internal	and	external	events.	

• Component	registration	and	discovery	services	use	a	service	bus	approach	to	permit	
building	highly	modular,	extensible,	dynamic	applications.	

• Created	using	a	visual	designer	tool,	layouts	are	snapshots	of	the	UI	that	may	be	
persisted	and	later	reconstituted.		An	important	application	of	layouts	is	to	create	



alternate	views	of	an	application	that	are	tailored	to	environmental	factors	such	as	
user	preference,	role,	physical	location,	specialty,	etc.	

• A	help	content	manager	supports	the	integration	of	on-line	help	content	created	using	
standard	help	authoring	tools.		Help	content	is	fully	searchable	and	context	sensitive.	

• Security	services	are	based	on	open	source	technologies	and	can	be	adapted	to	
multiple	authentication	schemes.	

	
Plugin	Component	Selection	
	
A	committee	comprised	of	both	clinical	and	non-clinical	representatives	selected	five	RPMS-
EHR	plugin	components	as	candidates	for	this	project:	
	

• Chief	Complaint	
• Immunizations	
• Family	History	
• Patient	Goals	
• Clinical	Information	Reconciliation	(CIR)	Tool	

	
Because	anticipated	development	resources	could	not	be	secured	due	to	contractual	barriers,	
and	because	of	the	unexpected	complexity	of	the	plugin,	the	CIR	tool	was	eventually	removed	
from	the	list	of	candidates.		The	remaining	four	plugins	were	successfully	and	faithfully	ported	
to	the	CWF.		In	each	case,	both	client-side	code	(2	written	in	Visual	Basic,	2	in	C#)	and	server-
side	M	code	and	files	had	to	be	ported.		For	server-side	components,	the	extent	of	changes	
required	was	directly	related	to	the	degree	of	overlap	and/or	conflict	with	existing	VistA	code	
and/or	files.		This	varied	widely	by	plugin.		For	client-side	code,	porting	was	relatively	
straightforward	because	the	programming	model	of	the	ZK	Framework	(the	web	UI	framework	
used	by	the	CWF)	is	very	similar	to	that	of	traditional	thick	client	programming.		For	some	
plugins,	we	attempted	to	faithfully	reproduce	the	look	and	feel	of	the	original.		For	others,	we	
took	some	liberties	with	the	UI	design	to	improve	usability	over	the	original.	
	
Infrastructure	Development	
	
Much	of	the	initial	effort	was	devoted	to	exposing	and	integrating	various	VistA	services.		From	
the	outset,	we	wanted	to	demonstrate	that	old	technologies	(e.g.,	RPC	broker)	and	new	
technologies	(e.g.,	web	services)	could	be	used	side-by-side.		This	allows	for	a	more	
evolutionary	approach	to	infrastructure	modernization,	permitting	one	to	leverage	the	
substantial	existing	inventory	of	VistA	services	while	gradually	migrating	to	more	contemporary	
technologies.			This	effort	included	the	following	tasks:	
	

• Create	a	Java-based	RPC	broker	client.		Because	the	Medsphere	RPC	broker	supports	
essential	capabilities	not	offered	by	the	VistA	RPC	broker	(specifically,	asynchronous	
calls	and	event	propagation),	this	was	chosen	as	a	starting	point.		Because	changes	to	



the	server-side	M	code	were	required	to	support	web-based	authentication,	the	server	
code	was	moved	from	the	CIA	namespace.		

• Create	a	web	services	infrastructure.		The	VPR	web	server	was	initially	chosen.		
However,	because	of	anomalies	with	the	GT.M	version	of	the	code	base	and	the	inability	
to	fully	customize	the	response	payload,	a	different	approach	was	eventually	selected	
(see	next).	

• Given	that	server-side	changes	to	both	the	RPC	broker	and	the	web	server	code	base	
were	required,	both	were	redesigned	by	building	them	atop	a	common	TCP	connection	
manager.		Called	NETSERV,	this	package	centralizes	the	configuration	of	TCP-related	
services	and	obviates	the	need	for	every	package	that	requires	TCP	connectivity	to	“roll	
their	own”	as	is	the	current	approach.		This	codebase	is	being	contributed	for	possible	
future	incorporation	into	the	VistA	kernel.	

• Create	a	property	persistence	adaptor	for	CWF.		Since	CWF	provides	only	a	rudimentary	
mechanism	for	persisting	property	values	(under	the	assumption	that	most	host	systems	
provide	this	capability	natively),	an	adaptor	is	required	to	make	use	of	the	VistA	
mechanism	for	persisting	property	values	(as	XPAR	parameters).	

• Create	a	FHIR	service	endpoint.		A	number	of	FHIR-based	plugins	exist	for	the	CWF	(for	
example,	a	patient	selection	plugin).		To	leverage	these,	a	framework	for	serializing	
VistA	domain	objects	was	developed	(the	VistA	Serialization	Framework).		This	
framework	uses	a	table-driven	approach	to	serialize	domain	objects	to	one	of	a	number	
of	possible	formats.		When	coupled	with	the	NETSERV	web	server,	a	RESTful	FHIR	
service	endpoint	can	be	created.		The	framework	can	support	multiple	FHIR	DSTU	
versions	in	both	JSON	and	XML	formats	as	well	as	custom	serialization	formats.		A	
number	of	domain	objects	have	been	implemented	(patient,	encounter,	organization,	
observation,	condition,	location,	medication,	etc.).		Currently	only	read	and	query	
operations	are	supported	(i.e.,	write-back	operations	are	not	supported).	

• Build	out	support	for	creating	and	managing	encounters.		Several	of	the	plugins	to	be	
ported	from	RPMS	require	the	ability	to	create	or	select	an	encounter.		We	modeled	
encounter	support	after	RPMS-EHR.		All	query	operations	were	implemented	using	
RESTful	FHIR	service	calls.		All	write	operations	used	existing	RPC’s	(since	FHIR-based	
write-back	services	have	not	yet	been	developed).	

• Add	HTML	Help	(CHM)	format	support	to	the	CWF	help	system.		This	is	the	format	
employed	by	the	RPMS-EHR	and	by	CPRS.		Doing	this	allowed	us	to	integrate	existing	
help	content	into	the	application.	

	
Plugin	Component	Development	
	
Chief	Complaint:		This	was	the	simplest	of	the	ported	plugins.	Because	the	M	code	and	files	had	
no	overlap	or	conflict	with	existing	VistA	code,	porting	of	the	server-side	components	was	
straightforward.		Like	the	original,	this	plugin	leverages	CWF	event	propagation	to	signal	
changes	to	the	chief	complaint	to	other	instances	of	the	application	that	may	be	viewing	the	
same	patient.	
	



Immunizations:		This	was	the	most	complicated	of	the	ported	plugins,	both	the	client-side	code	
(because	of	the	number	of	function	points)	and	the	server-side	code	(because	of	significant	
overlap	and	conflicts	with	the	VistA	Immunization	package).		For	the	latter,	we	leveraged	work	
being	done	under	the	VIMM	effort	to	reconcile	differences	between	the	VA	and	IHS	
immunization	packages	and	that	of	Sam	Habiel	to	port	the	full	functionality	of	the	IHS	
Immunization	package	to	VistA.		Further	complicating	matters	is	that	the	RPMS-EHR	
immunization	plugin	has	additional	supporting	code	that	required	modification.		In	the	end,	the	
result	was	less	than	satisfactory.		While	we	were	able	to	implement	all	capabilities	(though	
there	remains	some	anomalous	behavior),	the	VA	and	IHS	immunization	packages	have	not	
been	fully	reconciled	as	some	data	elements	are	fundamentally	different	and	require	special	
handling	in	the	UI.		We	believe	that	much	work	remains	to	truly	converge	the	two	
implementations,	that	such	a	goal	is	achievable	and	desirable,	and	that	the	current	effort	will	
not	achieve	this	to	a	satisfactory	degree.	
	
Family	History:		This	plugin	was	of	intermediate	complexity,	primarily	because	of	the	need	to	
port	the	IHS	Standard	Terminology	package	for	the	lookup	of	SNOMED	terms.		While	IHS	uses	a	
centralized	terminology	service	for	lookups,	they	also	provide	an	offline	mode.		We	did	not	
attempt	to	set	up	a	terminology	server	instance	but	rather	relied	on	the	offline	mode	for	this	
demonstration.		We	also	identified	and	fixed	some	previously	unrecognized	bugs	in	the	M	code	
that	were	uncovered	during	testing.		We	will	share	these	changes	with	IHS	for	possible	
incorporation	into	their	codebase.	
	
Patient	Goals:		We	took	significant	liberties	with	what	we	considered	to	be	a	rather	confusing	
UI	design	to	create	a	more	intuitive	user	experience	(UX).		We	also	made	some	backward-
compatible	changes	to	the	server-side	M	code	to	improve	the	efficiency	of	data	retrieval.		We	
will	share	these	changes	with	IHS	for	possible	incorporation	into	their	codebase.	
	
Conclusions	
	
We	were	successful	in	meeting	all	of	the	objectives	of	the	project.		The	majority	of	effort	was	
expended	in	building	out	the	necessary	infrastructure	to	expose	VistA	services	rather	than	the	
porting	of	the	plugin	components	themselves.		In	every	case,	we	were	able	to	replicate	the	
richness	of	the	thick	client	user	experience	–	a	testament	to	the	power	of	the	ZK	Framework.		
Because	the	programming	model	employed	by	ZK	more	closely	approximates	that	of	thick	client	
development	than	more	traditional	web	development	frameworks,	the	work	of	porting	legacy	
code	is	greatly	simplified.		ZK’s	visual	component	model	is	very	similar	to	those	of	Delphi,	Visual	
Basic,	and	C#.		Similarly,	ZK	provides	the	ability	to	create	visual	layouts	declaratively	as	well	as	
programmatically.		The	result	is	a	development	experience	that	will	be	very	familiar	to	
developers	of	thick	client	applications.	
	
While	we	ended	up	not	leveraging	any	work	from	the	eHMP	initiative,	several	artifacts	of	this	
project	should	be	of	interest	to	that	group.		Foremost	among	these	are	the	NETSERV	and	VistA	
Serialization	Framework	packages.		As	eHMP	web	service	offerings	mature,	these	could	be	
easily	consumed	by	CWF	components.	



	
All	of	the	code	generated	from	this	effort	may	be	downloaded	from	either	the	CWF	Github	site	
(for	infrastructure	code)	or	the	author’s	personal	Github	site	(for	plugin	code):	
	

• https://github.com/carewebframework	
• https://github.com/mdgeek	

	
	
Acknowledgements	
	
I	would	like	to	thank	Medsphere	Systems,	Inc.	for	contributing	effort	toward	this	project.		
Specifically,	Phillip	Salmon	ported	the	Chief	Complaint	and	Immunization	plugin	components.		
Phillip	was	able	to	quickly	achieve	a	high	level	of	proficiency	despite	having	limited	Java	and	
web	development	experience.	
	
I	would	also	like	to	thank	Kristopher	“Kit”	Teague	for	his	superlative	management	of	this	project	
and	for	running	interference	that	allowed	us	to	focus	on	development	tasks.		Without	his	
efforts,	this	project	would	not	have	achieved	its	objectives.	


